MATH2050C Selected Solution to Assignment 11

2, 3, 4, 5, 6, 12, 13, 15, 17.

Section 5.3

(1) By Max-min Theorem, f attains its minimum at some $z \in [a, b]$ and f(z) > 0 by assumption. It follows that $f(x) \ge f(z) > 0$ for all $x \in [a, b]$.

(3) Define a sequence $\{x_n\}$ be $|f(x_{n+1})| \leq |f(x_n)|/2$ where $x_1 \in [a, b]$ is arbitrary. We have $|f(x_n)| \leq |f(x_1)|/2^{n-1}$, and so $\lim_{n\to\infty} |f(x_n)| \leq \lim_{n\to\infty} |f(x_1)|^{2^{1-n}} = 0$. By Bolzano-Weierstrass, there is a subsequence $\{x_{n_j}\}$ converging to some $z \in [a, b]$. By continuity, $f(z) = \lim_{j\to\infty} f(x_{n_j}) = 0$. (Note that $\{a_n\}$ tends to 0 if and only if $\{|a_n|\}$ tends to 0.)

(4) For a polynomial p of odd degree, p(x) at $\pm \infty$ must be of different sign. Hence, we can find a large x > 0 and a large y < 0 such f(x)f(y) < 0. Applying Root Theorem to p on [y, x] we find some $c \in [y, x]$ such that p(c) = 0.

(5) p(-10) = 2991, p(0) = -9, and p(2) = 63. By the theorem on Existence of Zeros, there is a zero in (-10, 0) and another in (0, 2).

(6) The function g satisfies g(0) = f(0) - f(1/2) and g(1/2) = f(1/2) - f(1) = f(1/2) - f(0) = -g(0). It is also continuous on [0, 1/2]. If g(0) = 0, we are done. If $g(0) \neq 0, g(0)g(1/2) = -g(0)^2 < 0$, so the desired conclusion comes from the theorem on Existence of Zeros.

Note. Borsuk-Ulam Theorem asserts that any continuous mapping F from the unit sphere

$$S = \left\{ x \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 = 1 \right\},\$$

to \mathbb{R}^n satisfies the following property: There exists a point $p \in S$ so that F(p) = F(-p). This exercise is essentially the case n = 1.

(12) The function $g(x) = \cos x - x^2$ satisfies g(0) = 1 > 0 and $g(\pi/2) < 0$, so there is some $x_0 \in (0, \pi/2)$ such that $g(x_0) = 0$. Since $\cos x$ is strictly decreasing and x^2 is strictly increasing on $[0, \pi/2]$, g is strictly decreasing and x_0 is the unique zero for g. It means g(x) > 0, that is, $\cos x > x^2$ on $[0, x_0)$ and g(x) < 0, that is, $\cos x < x^2$ on $(x_0, \pi/2]$. It implies $f(x) = \cos x$ on $[0, x_0)$ and $f(x) = x^2$ on $(x_0, \pi/2]$. The conclusion comes from the fact that $\cos x > \cos x_0$ on $[0, x_0)$ and $x^2 > x_0^2$ on $(x_0, \pi/2]$.

(13) As $f \to 0$ as $x \to \infty$, for $\varepsilon = 1$, there is some M such that |f(x) - 0| < 1 for all $x, x \ge M$. Similarly, there is some N such that |f(x) - 0| < 1 for all x, x < -N. On the other hand, by the Boundedness Theorem, there is some L such that $|f(x)| \le L$ for $x \in [N, M]$. We conclude that $|f(x)| \le \max\{1, L\}$.

In case f > 0 somewhere, say, f(z) > 0 for some z. Let $\varepsilon = f(z)/2 > 0$, we find K such that |f(x) - 0| < f(z)/2 for all $x \in (-\infty, -K) \cup (K, \infty)$. So the supremum of f over \mathbb{R} is equal to the supremum of f over [-K, K]. Now by the Max-min Theorem, we conclude the minimum is attained on [-K, K]. When f < 0 everywhere, consider -f.

The function $f(x) = e^{-x^2}$ attains its maximum at x = 0 but its infimum, 0, is never attained.

(15) $f(x) = x^2$ is increasing on $[0, \infty)$ hence any open (resp. closed) subinterval in $[0, \infty)$ is mapped onto an open (resp. closed) interval. Similarly, the function is decreasing on $(-\infty, 0]$, hence any open (resp. closed) subinterval in $(-\infty, 0]$ is mapped onto an open (resp. closed) interval. On the other hand, whenever (a, b) contains the origin, since f(0) = 0 is the minimum, the image of f((a, b)) is of the form [0, c) for some positive c.

(17) Yes, f must be a constant function. Suppose not, there are rational numbers $r_1, r_2, r_1 < r_2$, such that $f(x) = r_1, f(y) = r_2$. Pick an irrational number h between r_1 and r_2 . Bolzano's Theorem asserts that f(z) = h for some z, contradicting the assumption on f.