MATH2050C Selected Solution to Assignment 11

$2,3,4,5,6,12,13,15,17$.

Section 5.3

(1) By Max-min Theorem, f attains its minimum at some $z \in[a, b]$ and $f(z)>0$ by assumption. It follows that $f(x) \geq f(z)>0$ for all $x \in[a, b]$.
(3) Define a sequence $\left\{x_{n}\right\}$ be $\left|f\left(x_{n+1}\right)\right| \leq\left|f\left(x_{n}\right)\right| / 2$ where $x_{1} \in[a, b]$ is arbitrary. We have $\left|f\left(x_{n}\right)\right| \leq\left|f\left(x_{1}\right)\right| / 2^{n-1}$, and so $\lim _{n \rightarrow \infty}\left|f\left(x_{n}\right)\right| \leq \lim _{n \rightarrow \infty}\left|f\left(x_{1}\right)\right| 2^{1-n}=0$. By BolzanoWeierstrass, there is a subsequence $\left\{x_{n_{j}}\right\}$ converging to some $z \in[a, b]$. By continuity, $f(z)=$ $\lim _{j \rightarrow \infty} f\left(x_{n_{j}}\right)=0$. (Note that $\left\{a_{n}\right\}$ tends to 0 if and only if $\left\{\left|a_{n}\right|\right\}$ tends to 0 .)
(4) For a polynomial p of odd degree, $p(x)$ at $\pm \infty$ must be of different sign. Hence, we can find a large $x>0$ and a large $y<0$ such $f(x) f(y)<0$. Applying Root Theorem to p on $[y, x]$ we find some $c \in[y, x]$ such that $p(c)=0$.
(5) $p(-10)=2991, p(0)=-9$, and $p(2)=63$. By the theorem on Existence of Zeros, there is a zero in $(-10,0)$ and another in $(0,2)$.
(6) The function g satisfies $g(0)=f(0)-f(1 / 2)$ and $g(1 / 2)=f(1 / 2)-f(1)=f(1 / 2)-f(0)=$ $-g(0)$. It is also continuous on $[0,1 / 2]$. If $g(0)=0$, we are done. If $g(0) \neq 0, g(0) g(1 / 2)=$ $-g(0)^{2}<0$, so the desired conclusion comes from the theorem on Existence of Zeros.
Note. Borsuk-Ulam Theorem asserts that any continuous mapping F from the unit sphere

$$
S=\left\{x \in \mathbb{R}^{n}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1\right\},
$$

to \mathbb{R}^{n} satisfies the following property: There exists a point $p \in S$ so that $F(p)=F(-p)$. This exercise is essentially the case $n=1$.
(12) The function $g(x)=\cos x-x^{2}$ satisfies $g(0)=1>0$ and $g(\pi / 2)<0$, so there is some $x_{0} \in(0, \pi / 2)$ such that $g\left(x_{0}\right)=0$. Since $\cos x$ is strictly decreasing and x^{2} is strictly increasing on $[0, \pi / 2], g$ is strictly decreasing and x_{0} is the unique zero for g. It means $g(x)>0$, that is, $\cos x>x^{2}$ on $\left[0, x_{0}\right)$ and $g(x)<0$, that is, $\cos x<x^{2}$ on $\left(x_{0}, \pi / 2\right]$. It implies $f(x)=\cos x$ on [$0, x_{0}$) and $f(x)=x^{2}$ on ($\left.x_{0}, \pi / 2\right]$. The conclusion comes from the fact that $\cos x>\cos x_{0}$ on [$0, x_{0}$) and $x^{2}>x_{0}^{2}$ on $\left(x_{0}, \pi / 2\right]$.
(13) As $f \rightarrow 0$ as $x \rightarrow \infty$, for $\varepsilon=1$, there is some M such that $|f(x)-0|<1$ for all $x, x \geq M$. Similarly, there is some N such that $|f(x)-0|<1$ for all $x, x<-N$. On the other hand, by the Boundedness Theorem, there is some L such that $|f(x)| \leq L$ for $x \in[N, M]$. We conclude that $|f(x)| \leq \max \{1, L\}$.
In case $f>0$ somewhere, say, $f(z)>0$ for some z. Let $\varepsilon=f(z) / 2>0$, we find K such that $|f(x)-0|<f(z) / 2$ for all $x \in(-\infty,-K) \cup(K, \infty)$. So the supremum of f over \mathbb{R} is equal to the supremum of f over $[-K, K]$. Now by the Max-min Theorem, we conclude the minimum is attained on $[-K, K]$. When $f<0$ everywhere, consider $-f$.
The function $f(x)=e^{-x^{2}}$ attains its maximum at $x=0$ but its infimum, 0 , is never attained.
(15) $f(x)=x^{2}$ is increasing on $[0, \infty)$ hence any open (resp. closed) subinterval in $[0, \infty)$ is mapped onto an open (resp. closed) interval. Similarly, the function is decreasing on $(-\infty, 0]$, hence any open (resp. closed) subinterval in ($-\infty, 0$] is mapped onto an open (resp. closed) interval. On the other hand, whenever (a, b) contains the origin, since $f(0)=0$ is the minimum, the image of $f((a, b))$ is of the form $[0, c)$ for some positive c.
(17) Yes, f must be a constant function. Suppose not, there are rational numbers $r_{1}, r_{2}, r_{1}<r_{2}$, such that $f(x)=r_{1}, f(y)=r_{2}$. Pick an irrational number h between r_{1} and r_{2}. Bolzano's Theorem asserts that $f(z)=h$ for some z, contradicting the assumption on f.

