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Section 5.3

(1) By Max-min Theorem, f attains its minimum at some z ∈ [a, b] and f(z) > 0 by assumption.
It follows that f(x) ≥ f(z) > 0 for all x ∈ [a, b].

(3) Define a sequence {xn} be |f(xn+1)| ≤ |f(xn)|/2 where x1 ∈ [a, b] is arbitrary. We have
|f(xn)| ≤ |f(x1)|/2n−1, and so limn→∞ |f(xn)| ≤ limn→∞ |f(x1)|21−n = 0. By Bolzano-
Weierstrass, there is a subsequence {xnj} converging to some z ∈ [a, b]. By continuity, f(z) =
limj→∞ f(xnj ) = 0. (Note that {an} tends to 0 if and only if {|an|} tends to 0.)

(4) For a polynomial p of odd degree, p(x) at ±∞ must be of different sign. Hence, we can find
a large x > 0 and a large y < 0 such f(x)f(y) < 0. Applying Root Theorem to p on [y, x] we
find some c ∈ [y, x] such that p(c) = 0.

(5) p(−10) = 2991, p(0) = −9, and p(2) = 63. By the theorem on Existence of Zeros, there is a
zero in (−10, 0) and another in (0, 2).

(6) The function g satisfies g(0) = f(0)− f(1/2) and g(1/2) = f(1/2)− f(1) = f(1/2)− f(0) =
−g(0). It is also continuous on [0, 1/2]. If g(0) = 0, we are done. If g(0) 6= 0, g(0)g(1/2) =
−g(0)2 < 0, so the desired conclusion comes from the theorem on Existence of Zeros.

Note. Borsuk-Ulam Theorem asserts that any continuous mapping F from the unit sphere

S =
{
x ∈ Rn : x21 + x22 + · · ·+ x2n = 1

}
,

to Rn satisfies the following property: There exists a point p ∈ S so that F (p) = F (−p). This
exercise is essentially the case n = 1.

(12) The function g(x) = cosx − x2 satisfies g(0) = 1 > 0 and g(π/2) < 0, so there is some
x0 ∈ (0, π/2) such that g(x0) = 0. Since cosx is strictly decreasing and x2 is strictly increasing
on [0, π/2], g is strictly decreasing and x0 is the unique zero for g. It means g(x) > 0, that is,
cosx > x2 on [0, x0) and g(x) < 0, that is, cosx < x2 on (x0, π/2]. It implies f(x) = cosx on
[0, x0) and f(x) = x2 on (x0, π/2]. The conclusion comes from the fact that cosx > cosx0 on
[0, x0) and x2 > x20 on (x0, π/2].

(13) As f → 0 as x→∞, for ε = 1, there is some M such that |f(x)− 0| < 1 for all x, x ≥M .
Similarly, there is some N such that |f(x) − 0| < 1 for all x, x < −N . On the other hand, by
the Boundedness Theorem, there is some L such that |f(x)| ≤ L for x ∈ [N,M ]. We conclude
that |f(x)| ≤ max{1, L}.
In case f > 0 somewhere, say, f(z) > 0 for some z. Let ε = f(z)/2 > 0, we find K such that
|f(x) − 0| < f(z)/2 for all x ∈ (−∞,−K) ∪ (K,∞). So the supremum of f over R is equal to
the supremum of f over [−K,K]. Now by the Max-min Theorem, we conclude the minimum is
attained on [−K,K]. When f < 0 everywhere, consider −f .

The function f(x) = e−x
2

attains its maximum at x = 0 but its infimum, 0, is never attained.
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(15) f(x) = x2 is increasing on [0,∞) hence any open (resp. closed) subinterval in [0,∞) is
mapped onto an open (resp. closed) interval. Similarly, the function is decreasing on (−∞, 0],
hence any open (resp. closed) subinterval in (−∞, 0] is mapped onto an open (resp. closed)
interval. On the other hand, whenever (a, b) contains the origin, since f(0) = 0 is the minimum,
the image of f((a, b)) is of the form [0, c) for some positive c.

(17) Yes, f must be a constant function. Suppose not, there are rational numbers r1, r2, r1 < r2,
such that f(x) = r1, f(y) = r2. Pick an irrational number h between r1 and r2. Bolzano’s
Theorem asserts that f(z) = h for some z, contradicting the assumption on f .


